Wann gilt der Sinussatz?

Wann gilt der Sinussatz?

Der Sinus-Satz gilt auch in stumpfwinkligen Dreiecken. Man kann ihn nutzen, um beispielsweise fehlende Stücke eines Dreiecks zu berechnen, wenn zwei Seitenlängen und ein gegenüber liegender Winkel oder eine Seitenlänge und zwei Winkel gegeben sind.

Wann wende ich Sinus Cosinus oder Tangens an?

Beziehungen trigonometrischer Funktionen

Sinus Kosinus Tangens
sin(180°+α)=−sin(α) cos(180°+α)=−cos(α) tan(180°+α)=tan(α)
sin(180°−α)=sin(α) cos(180°−α)=−cos(α) tan(180°−α)=−tan(α)
sin(360°−α)=−sin(α) cos(360°−α)=cos(α) tan(360°−α)=−tan(α)

Wie geht der Kosinussatz?

α und b liegen im linken Dreieck, a liegt im rechten, c ist die Summe jeweils einer Kathete beider Dreiecke. Die Idee ist nun, die beiden Dreiecke durch ihre gemeinsame Größe h rechnerisch zu „verbinden“, um mit den gegebenen Größen zur Größe a zu gelangen. Außerdem gilt: p = b · cos(α). Somit gilt: q = c – b · cos(α).

Wie berechne ich Winkel mit dem Kosinussatz?

Der Kosinussatz für den Winkel alpha lautet „a Quadrat ist gleich b Quadrat plus c Quadrat minus zwei mal b mal c mal Kosinus alpha“. Da der Winkel alpha 90 Grad beträgt, ergibt sich Kosinus von 90 Grad und das gibt Null.

Wann ist der Kosinussatz anwendbar?

Der Kosinussatz ist anwendbar wenn zwei Seiten und der eingeschlossene Winkel gegeben sind.

Wann wendet man Sinus und Kosinussatz an?

Der Sinus- und der Kosinussatz stellen Beziehungen zwischen Seitenlängen und Winkeln in beliebigen Dreiecken her.

Wann COS Satz?

Der Kosinussatz drückt eine Beziehung zwischen den drei Seiten und einem Winkel im Dreieck aus. Man kann aus zwei Seiten und dem von ihnen eingeschlossenen Winkel die dritte Seite berechnen oder aus drei Seiten einen Winkel. Der Kosinussatz gehört neben dem Sinussatz zu den wichtigsten Sätzen der Trigonometrie.

Was berechnet der Tangens?

Tangens alpha ist im Zähler: Länge der Gegenkathete mal Hypotenuse. Der im Zähler und Nenner auftretende Faktor Hypotenuse kann gekürzt werden und es ergibt sich für den Tangens eines Winkels im rechtwinkligen Dreieck: Tangens alpha ist der Quotient aus Länge der Gegenkathete durch Länge der Ankathete.

Wann nehme ich den Sinussatz und wann den Kosinussatz?

Der Vorteil des Kosinussatzes ist, dass die Werte immer eindeutig sind. Man erhält für die Winkelberechnung einen Wert von 0° bis 180° . Beim Sinussatz hingegen erhält man stets einen Winkel von 0° bis 90° und muss das Ergebnis rechnerisch bzw. mit der gegebenen Zeichnung überprüfen.

Wann gilt der Sinussatz?

Wann gilt der Sinussatz?

Der Sinus-Satz gilt auch in stumpfwinkligen Dreiecken. Man kann ihn nutzen, um beispielsweise fehlende Stücke eines Dreiecks zu berechnen, wenn zwei Seitenlängen und ein gegenüber liegender Winkel oder eine Seitenlänge und zwei Winkel gegeben sind.

Was macht der Sinussatz?

Der Sinussatz verbindet gegenüberliegende Größen (Seiten und Winkel) im allgemeinen Dreieck. Sind zwei einander gegenüberliegende Größen gegeben, so kann zu einer dritten die gegenüberliegende Größe berechnet werden. Der Sinussatz gehört neben dem Kosinussatz zu den wichtigsten Sätzen der Trigonometrie.

Woher kommt der Sinussatz?

Der Sinussatz ist ein großer Teil der Trigonometrie. Mithilfe des Sinussatzes wird eine Verbindung zwischen den Seitenlängen und den Winkeln hergestellt. Ein persischer Astronom und Mathematiker, der zwischen 960 nach Christus und 1036 nach Christus lebte wurde der Sinussatz erstmals bewiesen.

Kann man den Sinussatz auch in nicht rechtwinkligen Dreiecken anwenden?

Bisher hast du mit Sinus, Kosinus und Tangens nur im rechtwinkligen Dreieck gerechnet. Aber es gibt eine Regel, mit der du mithilfe des Sinus in jedem Dreieck die Seitenlängen und Winkel berechnen kannst! Das ist der Sinussatz. Den kannst du dir sogar selbst herleiten.

Welche Gleichungen ergeben sich wenn man den Sinussatz auf ein rechtwinkliges Dreieck anwendet?

Wegen |MB|=r und Winkel(MPB)=90° gilt im rechtwinkligen Dreieck MBP: r·sin(α) = |BP| und im Dreieck MPC analog r·sin(α) = |CP|. Allerdings gilt 2r=b/sin(β)=c/sin(γ) schon aufgrund des Sinussatzes (b/sin(β)=c/sin(γ)=a/sin(α)).

Wann verwendet man Tan 1?

Mit dem Tangens rechnest du, wenn du zwei der drei Größen, Winkel, Ankathete des Winkels und Gegenkathete des Winkels gegeben hast und die dritte Größe suchst. Das Vorgehen ist also ähnlich wie beim Sinus und Kosinus.

In welchen Dreiecken gilt der Kosinussatz?

Der Kosinussatz wird auch als trigonometrischer Pythagoras bezeichnet. Das rührt daher, daß mit ihm wie beim Satz des Pythagoras eine fehlende Dreieckseite berechnet werden kann, allerdings im Gegensatz zum Pythagoras, der ja nur für rechtwinklige Dreiecke gilt, in jedem beliebigen Dreieck.

Für welche Dreiecke kann man den Sinussatz anwenden?

In beliebigen Dreiecken hast du durch das Einzeichnen einer Höhe rechtwinklige Dreiecke hergestellt. Dann konntest du wieder mit Sinus, Kosinus und Tangens rechnen. Aber es gibt eine Regel, mit der du mithilfe des Sinus in jedem Dreieck die Seitenlängen und Winkel berechnen kannst! Das ist der Sinussatz.

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben