Was macht man mit einer Differentialgleichung?

Was macht man mit einer Differentialgleichung?

Eine Differentialgleichung (kurz Diff. ‚gleichung oder DGL) ist eine Gleichung, in der eine Funktion und auch Ableitungen von dieser Funktion auftauchen können. Die Lösung dieser Art von Gleichung ist eine Funktion – keine Zahl!

Was beschreibt eine DGL?

Differentialgleichungen sind Gleichungen, deren Lösungen keine Zahlen, sondern Funktionen sind. Sie beschreiben den Zusammenhang, der zwischen gesuchter Funktion und ihren Ableitungen herrschen soll. Es können also gewöhnliche Ableitungen der Funktion in dieser einen Variablen auftreten.

Was sagen Differentialgleichungen aus?

Durch gewöhnliche Differentialgleichungen lassen sich viele dynamische Systeme aus der Technik, Natur und Gesellschaft beschreiben. Viele auf den ersten Blick sehr verschiedene physikalische Probleme lassen sich mit der GDGL jedoch formal identisch darstellen.

Was ist die allgemeine Lösung einer Differentialgleichung?

Die allgemeine Lösung einer exakten Differentialgleichung ist F(x, y) = C , C ∈ R . . . const. Dabei ist F eine Stammfunktion. Es sei weiters erwähnt, dass sich zwei Stammfunktionen zu P dx + Qdy = 0 nur durch eine additive Konstante unterscheiden.

Was ist eine Differentialgleichung Physik?

Differentialgleichung, mathematische Gleichung, die Ableitungen einer unbekannten Funktion y enthält. Differentialgleichungen spielen in der Physik eine überragende Rolle, da physikalische Gesetze und Zusammenhänge sich häufig als Differentialgleichung darstellen lassen.

Was ist eine partikuläre Lösung?

Definition a) Die Menge aller Lösungen bildet die allgemeine Lösung einer DGL. b) Eine Lösung, die zusätzliche Bedingungen erfüllt, heißt partikuläre Lösung.

Wann ist eine DGL linear?

Die Ordnung einer DGL erkennst du ganz einfach an der höchsten Ableitung, die in der Gleichung vorkommt. Falls die gesuchte Funktion oder eine ihrer Ableitungen in eine nicht-lineare Funktion (z.B. oder ) verstrickt ist, dann ist die DGL nicht-linear. Beispiel: ist also eine nicht-lineare DGL (erster Ordnung).

Wann ist eine DGL autonom?

Als autonome Differentialgleichung oder autonomes System bezeichnet man einen Typ von gewöhnlichen Differentialgleichungen, der nicht explizit von der unabhängigen Variable abhängt. Die unabhängige Variable steht in den Anwendungen häufig für die Zeit.

Was beschreibt die partikuläre Lösung?

Daraus folgt, dass durchaus verschiedene Funktionen die gleiche DGL befriedigen können. Solche Funktionen werden partikuläre oder spezielle Lösungen genannt. Jede homogene DGL n. Ordnung hat auch n partikuläre Lösungen.

Was ist eine homogene Differentialgleichung?

Unterschied homogene und inhomogene Differentialgleichung Die rechte Seite der Differentialgleichung ist die Inhomogenität. Sie wird auch Störfunktion genannt. Wenn b(x) = 0 ist, heißt die Differentialgleichung homogen. Ansonsten wird sie als inhomogen bezeichnet.

Was ist die wellengleichung?

Das t-y-Diagramm eines von der Welle erfassten Teilchens ist ebenfalls eine Sinuslinie. Die einzelnen Sinusschwingungen der von der Welle erfassten Teilchen besitzen eine Phasenverschiebung Δφ=ω⋅Δt. Die Phasenverschiebung hängt davon ab wie weit das betrachtete Teilchen vom ersten Teilchen der Kette entfernt ist.

Was ist die Schwingungsgleichung?

Mit der Schwingungsgleichung können wir bei bekannter Schwingungsdauer oder Frequenz sowie für eine bekannte Amplitude die Auslenkung eines harmonischen Oszillators zu jedem Zeitpunkt t berechnen.

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben