Was bedeutet Orthonormalbasis?

Was bedeutet Orthonormalbasis?

Eine Orthonormalbasis (oft mit ONB abgekürzt) ist eine Basis eines Vektorraumes, wobei deren Basisvektoren orthonormal zueinander sind. Das heißt das Skalarprodukt zweier beliebiger Basisvektoren ergibt Null und jeder Basisvektor besitzt die Norm 1. ist eine Menge aus Vektoren dieses Vektorraums.

Was sind orthonormale Vektoren?

In der Elementargeometrie nennt man zwei Geraden oder Ebenen orthogonal (bzw. senkrecht), wenn sie einen rechten Winkel, also einen Winkel von 90°, einschließen. In der linearen Algebra wird der Begriff auf allgemeinere Vektorräume erweitert: zwei Vektoren heißen zueinander orthogonal, wenn ihr Skalarprodukt null ist.

Warum Orthonormalbasis?

Verzichtet man auf die Bedingung, dass die Vektoren auf die Länge eins normiert sind, so spricht man von einer Orthogonalbasis. Der Begriff der Orthonormalbasis ist sowohl im Fall endlicher Dimension als auch für unendlichdimensionale Räume, insbesondere Hilberträume, von großer Bedeutung.

Was ist ein orthogonales System?

In der Linearen Algebra und der Funktionalanalysis, Teilgebieten der Mathematik, ist ein Orthogonalsystem eine Menge von Vektoren eines Vektorraums mit Skalarprodukt (Prähilbertraum), die paarweise aufeinander senkrecht stehen.

Wie bestimme ich eine orthonormalbasis?

Eine Orthonormalbasis eines Innenproduktraums ist in der linearen Algebra und der Funktionalanalysis eine Basis dieses Vektorraums, deren Vektoren alle die Länge (die Norm) 1 haben (also Einheitsvektoren sind), und die alle orthogonal (daher auch Orthogonalbasis) zueinander stehen.

Wann bilden Vektoren eine Orthonormalbasis?

Was ist die Basis in der Mathematik?

In der linearen Algebra ist eine Basis eine Teilmenge eines Vektorraumes, mit deren Hilfe sich jeder Vektor des Raumes eindeutig als endliche Linearkombination darstellen lässt.

Was ist die Norm eines Vektors?

Die euklidische Norm, Standardnorm oder 2-Norm ist eine in der Mathematik häufig verwendete Vektornorm. Im zwei- und dreidimensionalen euklidischen Raum entspricht die euklidische Norm der anschaulichen Länge oder dem Betrag eines Vektors und kann mit dem Satz des Pythagoras berechnet werden.

Was versteht man unter orthogonalen Matrizen?

Eine orthogonale Matrix ist in der linearen Algebra eine quadratische, reelle Matrix, deren Zeilen- und Spaltenvektoren orthonormal bezüglich des Standardskalarprodukts sind. Damit ist die Inverse einer orthogonalen Matrix gleichzeitig ihre Transponierte.

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben