Kann eine Funktion symmetrisch zur X-Achse sein?

Kann eine Funktion symmetrisch zur X-Achse sein?

Symmetrie zur x-Achse zwischen zwei Funktionen Die Gleichung kann man mit –1 multiplizieren, und erhält die Gleichung –f(x)=g(x) , mit der man die Symmetrie zweier Funktionen zur x-Achse ebenfalls beschreiben kann.

Wie zeigt man dass eine Funktion symmetrisch ist?

Bei ganzrationalen Funktionen schaut man nur auf die Hochzahlen von „x“. Gibt es nur gerade Hochzahlen, ist f(x) symmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, ist f(x) symmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, ist f(x) nicht symmetrisch.

Wie heißen Funktionen die symmetrisch zur y-Achse sind?

Die Funktionskurve einer geraden Funktion ist spiegelsymmetrisch zur Y-Achse angeordnet. Dies bedeutet, dass jeder auf der Kurve gelegene Punkt durch Spiegelung an der Y-Achse wieder in einen Kurvenpunkt übergeht. Mathematisch findet man solch eine Funktion wenn gilt: f(-x) = f(x).

Ist der Graph der Funktion f symmetrisch zur y-Achse oder zum koordinatenursprung begründen Sie?

Der Graph von f ist achsensymmetrisch zur y-Achse, da alle Potenzen von x gerade sind; der Graph von g ist punktsymmetrisch zum Koordinatenursprung, da alle Potenzen von x ungerade sind. Demzufolge ist f eine gerade und g eine ungerade Funktion.

Wann ist eine Funktion symmetrisch zur Y-Achse?

Um eine Funktion f(x) auf Symmetrie zu untersuchen, bildest du als erstes f(−x). Lässt sich dieser Ausdruck in f(x) umformen, ist der Graph achsensymmetrisch zur y-Achse. Lässt sich dieser Ausdruck dagegen in −f(x) umformen, ist der Graph punktsymmetrisch zum Ursprung.

Wann sind zwei Funktionen symmetrisch zueinander?

Der Graph einer Funktion f ist punktsymmetrisch bezüglich des Punkts P(a|b), wenn für alle x∈Df gilt: b – f(a – x) = f(a + x) – b. Beispiele: f:x↦(x−2)2, x∈R.

Wann ist eine Funktion punktsymmetrisch und Achsensymmetrisch?

Wann ist eine ganzrationale Funktion achsensymmetrisch zur Y-Achse?

Ganzrationale Funktionen Teil 1 f(x) = f(-x) gilt genau dann, wenn nur gerade Exponenten auftauchen. Also gilt: Hat eine ganzrationale Funktion nur x-Potenzen mit geraden Hochzahlen, so ist der Graph der Funktion achsensymmetrisch zur y-Achse.

Wann ist ein Graph punktsymmetrisch und wann Achsensymmetrisch?

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben