Wie funktioniert ein massenspektrum?
Ein Massenspektrometer ist ein Gerät, um bei bekannter Ladung die Masse von Atomen oder Molekülen zu bestimmen. Als Ergebnis erhältst du ein sogenanntes Massenspektrum. Dieses ist eine grafische Darstellung der Intensität der Ionen in Abhängigkeit des Masse-zu-Ladung-Verhältnisses.
Was macht man mit einem Massenspektrometer?
Die Massenspektrometrie ist ein Verfahren zum Messen des Masse-zu-Ladung-Verhältnisses m/q von Teilchen. Bei bekannter Ladung q kann daraus die Masse m der Teilchen ermittelt werden. Außerdem können Aussagen über das Vorhandensein und die Menge von Teilchen mit bekanntem Masse-zu-Ladung-Verhältnis gemacht werden.
Was zeigt ein Massenspektrum?
Ein Massenspektrum wird als zweidimensionale Information von Ionenhäufigkeit versus m/z darstellt. Man registriert also die Ionen, die aus einer Substanz gebildet werden, bei ihren jeweiligen m/z-Werten und achtet außerdem darauf, wie intensiv die zugehörigen Signale ausfallen.
Welche ist die richtige Reihenfolge der Schritte in einem Massenspektrometer?
1 Grundlagen der Massenspektrometrie Der Aufbau eines MS läßt sich somit in vier Hauptkomponenten aufgliedern: Probenaufgabesystem, Ionisierung, Massentrennung und Detektion (Abb. 1).
Wie werte ich ein Massenspektrum aus?
Für die Auswertung eines Massenspektrums bedeutet das, dass sich die Peaks mit den höchsten Massen meist am sichersten zuordnen lassen, da deren Entstehung relativ eindeutig ist. Man beginnt daher die Auswertung eines Spektrums immer beim höchsten Peak und tastet sich von dort zu den kleineren Massen vor.
Wann Massenspektrometrie?
Eingesetzt wird sie unter anderem bei der Charakterisierung von chemischen Verbindungen, in der Biochemie zur Untersuchung von Biomolekülen, in der medizinischen Chemie zur Identifizierung von Substanzen in Körperflüssigkeiten oder Organen, in kriminaltechnischen Untersuchungen, bei Dopingkontrollen, in der …
Warum hat Chlor immer 2 Peaks?
Der sogenannte M+1-Peak entsteht durch ein eingebautes Isotop höherer Masse, entweder 2H oder 13C; der M+2-Peak besitzt zwei Isotopen höherer Masse etc. Bei den Halogenen Chlor und Brom dagegen sind höhere Isotope recht häufig, was sich in einem charakteristischen Signal äußert.