Was versteht man unter Autokorrelation?

Was versteht man unter Autokorrelation?

Autokorrelation bedeutet ‚mit sich selbst korreliert‘, das heißt, verschiedene Beob- achtungen einer Variable sind untereinander korreliert. Damit ein solches Muster interpretierbar ist, muss die Reihenfolge der Beobachtungen einer logischen Ordnung gehorchen, wie dies zum Beispiel bei Zeitreihen der Fall ist.

Was tun bei Autokorrelation?

Am einfachsten kann man Autokorrelation kontern, indem man robuste Standardfehler schätzen lässt. Wir haben oben bereits gelernt, dass die Koeffizienten nicht verzerrt sind, sondern lediglich deren Standardfehler. Schätzt man nun robuste Standardfehler, lässt sich das Problem recht bequem lösen.

Was bedeutet keine Autokorrelation?

Wenn das Vorzeichen und die Größe der Residuen nicht mit dem Vorzeichen und der Größe der darauf folgenden Residuen in Beziehung stehen, gibt es keine Autokorrelation, und dies impliziert, dass die Fehler des Modells unabhängig sind. …

Was ist Endogenität?

Endogenität (von „endogen“) bedeutet in der Regressionsanalyse, dass ein Zusammenhang zwischen den erklärenden (unabhängigen) Variablen und der Störgröße besteht.

Was ist serielle Korrelation?

Wenn zwischen den Gliedern der Folge eine Beziehung besteht, die mehr als zufällig ist, hat auch die Korrelation der ursprünglichen Folge mit der verschobenen Folge in der Regel einen Wert, der signifikant von Null abweicht. Man sagt dann, die Glieder der Folge sind autokorreliert.

Wann autokorrelation?

Grundsätzlich spricht man von einer Korrelation, wenn zwischen zwei Variablen ein Zusammenhang besteht. Wird bei Ausprägungen nur eines Merkmals im Zeitablauf ein Zusammenhang der Ergebniswerte beobachtet, spricht man von einer Autokorrelation.

Wann robuste Standardfehler?

Robuste Standardfehler gegen Heteroskedastizität Wenn diese Regressionsvoraussetzung verletzt ist, dann können verzerrte Standardfehler und damit falsche Ergebnisse in Ihrem Hypothesentest die Folge sein. Diese nennt man heteroskedastizität-konsistente Standardfehler (im folgenden: HC-Standardfehler).

Was ist Homoskedastizität?

Homoskedastizität bedeutet, dass die Varianz der Residuen in einer Regressionsanalyse für alle Werte des Prädiktors konstant ist.

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben