Was für ein Widerstand hat eine Glühlampe?
Bei kleineren Spannungen findet man weniger Widerstand, weil der Widerstand eines Metalldrahts von seiner Temperatur abhängt. Im kalten Zustand hat die Lampe nur etwa 1,5 Ohm. Das Verhältnis Kalt/Warmwiderstand von 1 : 10 gilt für normale Glühlampen.
Was kann man über den Widerstand der Glühlampe Aussagen?
Wir haben gerade gesehen, dass die Glühlampe beim Einschalten einen niedrigeren Widerstand besitzt, da die Glühwendel noch kalt ist. Erst wenn sie Betriebstemperatur erreicht hat, ist auch der Nennwiderstand erreicht und der Nennstrom fließt. Da gilt I = U/R muss die Stromstärke höher sein, je kleiner R ist.
Was sagt der temperaturkoeffizient aus?
Der Temperaturkoeffizient (deutsch:Temperaturbeiwert) beschreibt die relative Änderung einer physikalischen Größe in Abhängigkeit von der Änderung der Temperatur gegenüber einer Bezugstemperatur.
Wie berechnet man den Widerstand einer Glühbirne?
Die Leistung einer Schaltung berechnet sich ausP=U⋅I⇒I=PU=12,3ANach dem Ohmschen Gesetz ergibt dies für den Widerstand R=UI=529Ω.
Warum ist der Widerstand bei einer Glühlampe nicht konstant?
Für die Glühlampe gilt das Ohmsche Gesetz nicht, weil die Temperatur der Glühlampe nicht gleich bleibt. Außerdem führt der höhere Widerstand auch zu einer geringeren Stromstärke im Stromkreis (U ~ I – Ohmsches Gesetz).
Welche physikalische Eigenschaften hat Wolfram?
Physikalische Eigenschaften. Wolfram ist ein weißglänzendes, in reinem Zustand dehnbares Metall mittlerer Härte sowie hoher Dichte und Festigkeit. Die Dichte ist fast gleich hoch wie die von Gold, die Brinellhärte beträgt 250 HB, die Zugfestigkeit 550–620 N/mm2 bis 1920 N/mm2.
Wie kann man den elektrischen Widerstand bestimmen?
wobei R der elektrische Widerstand, ρ der spezifische Widerstand, l die Länge und A die Querschnittsfläche des Leiters ist. Folglich kann man ρ {displaystyle rho } aus der Messung des Widerstandes eines Leiterstückes bekannter Geometrie bestimmen:
Was ist der höchste Schmelzpunkt von Wolfram?
Wolfram besitzt mit 3422 °C den höchsten Schmelzpunkt aller chemischen Elemente (Kohlenstoff schmilzt nicht, sondern geht bei 3642 °C direkt in den gasförmigen Zustand über) und mit 5930 °C auch den höchsten Siedepunkt. Das Metall ist ein Supraleiter mit einer Sprungtemperatur von 15 mK.
Welche Bedeutung hat Wolfram für die Leuchtmittelindustrie?
Wolfram findet wegen seines hohen Schmelzpunktes in der Leuchtmittelindustrie als Glühwendel in Glühlampen und als Elektrode in Bogenlampen und in Elektronenröhren Verwendung. Seine zweite große Bedeutung hat es als Legierungsmetall in der Eisen metallurgie.