Was ist eine additive Konstante?
In einem Funktionsterm bezeichnet man einen Summanden, in dem die unabhängige Variable der Funktion – in der Regel x – nicht auftaucht, eine additive Konstante. Ein einfaches Beispiel ist der y-Achsenabschnitt b in einer linearen Funktion y = mx + b.
Was macht man mit Integralrechnung?
Die Integralrechnung steht in engem Zusammenhang mit der Differentialrechnung. Die Integralrechnung ist motiviert durch die Berechnung von Flächeninhalten, die eine krummlinige Grenze haben. Das bestimmte Integral berechnet nämlich die Fläche zwischen dem Graph einer Funktion und der x-Achse.
Was fällt bei der Ableitung weg?
Beim Ableiten bleibt der Faktor erhalten. x2 wird nach der Potenzregel abgeleitet.
Für was braucht man Integralrechnung?
Ingenieure müssen für ihre Konstruktionen die Flächen von Formen genauso berechnen, wie Hersteller von Produkten wissen müssen, wie viel von welchen Materialien gebraucht wird. Dies kann Integralrechnung leisten. Neben Schüsseln, Schalen und Pfeffermühlen sind aber auch noch andere Objekte Rotationskörper.
Was sind die Grundlagen der Integralrechnung?
Integralrechnung: Grundlagen und Summenregel Im Folgenden zeigen wir euch, was es mit der Summenregel der Integralrechnung auf sich hat. Ziel ist es, die Fläche unter einer Funktion zu berechnen. Wir beginnen dabei mit der Untersumme. Schaut euch einmal die folgende Grafik an: In schwarz wird die Funktion dargestellt.
Wie lässt sich die Integralrechnung in einer Variable deuten?
Integralrechnung. Bildet man das bestimmte Integral einer reellen Funktion in einer Variablen, so lässt sich das Ergebnis im zweidimensionalen Koordinatensystem als Flächeninhalt der Fläche, die zwischen dem Graphen der Funktion, der -Achse sowie den begrenzenden Parallelen zur -Achse liegt, deuten.
Was ist das unbestimmte Integral einer Differenz?
Das unbestimmte Integral einer Summe ist gleich der Summe der unbestimmten Integrale. Mithilfe der Summenregel können wir den Integranden auseinanderziehen und dadurch die Berechnung vereinfachen. Das unbestimmte Integral einer Differenz ist gleich der Differenz der unbestimmten Integrale.
Welche Summenregeln gibt es bei der Integralrechnung?
Wie auch bei der Summenregel der Differentation gibt es bei der Integralrechnung auch eine Summenregel, die sehr ähnlich aussieht. Diese besagt, dass ihr Gliedweise integrieren dürft. Wie immer sind einige Beispiele für das Verständnis vermutlich am besten: