Sind Untergruppen Gruppen?
Gruppen, die auf diese Art als Teilmengen von anderen entstehen, werden als Untergruppen bezeichnet. Definition 3.1 (Untergruppen). Es sei (G, ·) eine Gruppe und U eine Teilmenge von G.
Was ist eine echte Untergruppe?
Eine nichtleere Teilmenge H einer Gruppe G mit ab−1 ∈ H für a, b ∈ H nennt man eine Untergruppe von G. Untergruppen H von G mit H = G nennen wir echte Untergruppen von G. Eine echte Untergruppe M von G nennt man maximale Untergruppe von G, falls keine Untergruppe H von G mit M
Ist N +) eine Gruppe?
Das Paar (N,+) ist keine Gruppe, da es in der Menge N nicht zu jedem Element ein inverses Element gibt. Die Paare (Q,+) und (Q \ {0},·) sind abelsche Gruppen. Es sei P die Menge der Polynome, dann ist das Paar (P,+) eine abelsche Gruppe. Das neutrale Element ist die 0 und zu einem Polynom p(x) ist −p(x) das inverse.
Was ist eine erzeugte Untergruppe?
Erzeugte Untergruppen [ Bearbeiten | Quelltext bearbeiten] Da der Durchschnitt von Untergruppen wieder eine Untergruppe ist, gibt es zu jeder Teilmenge einer Gruppe eine bezüglich der Inklusion minimale Untergruppe von , die enthält. Diese Untergruppe wird mit bezeichnet und die von erzeugte Untergruppe von genannt.
Was ist die Untergruppe der Untergruppe?
Die Gruppe ( G , ∘ ) {displaystyle (G,circ )} heißt Obergruppe der Untergruppe ( U , ∘ ) {displaystyle (U,circ )} , in Zeichen G ≥ U {displaystyle Ggeq U} . Untergruppen sind die Unterstrukturen in der Gruppentheorie.
Was ist eine Untergruppe in der Mathematik?
In der Gruppentheorie der Mathematik ist eine Untergruppe ( U , ∘ ) {displaystyle (U,circ )} einer Gruppe ( G , ∘ ) {displaystyle (G,circ )} eine Teilmenge U {displaystyle U} von G {displaystyle G} , die bezüglich der Verknüpfung ∘ {displaystyle circ } selbst wieder eine Gruppe ist.
Ist eine Gruppe eine Gruppe?
Eine Gruppe besteht also immer aus zwei Daten: einer Menge und einer Verknüpfung. Deshalb schreibt man auch oft “Sei (G,◦) eine Gruppe”. Um sich Schreibarbeit zu sparen, sagt man oft kurz “Sei G eine Gruppe” und denkt sich die Verknüpfung ◦ dazu.