Für was sind Optokoppler?
Ein Optokoppler ist ein Bauelement der Optoelektronik und dient zur Übertragung eines Signals zwischen zwei galvanisch getrennten Stromkreisen. Er besteht üblicherweise aus einer Leuchtdiode (LED) oder Laserdiode (LD) als optischem Sender und einer Photodiode oder einem Fototransistor als optischem Empfänger.
Wie funktioniert ein Optokoppler?
Ein Optokoppler besteht aus einer Leuchtdiode und einem Fotosensor. Das Prinzip des Optokopplers: Ein elektrisches Signal wird am Eingang des Optokopplers von einem Lichtsender, in ein optisches Signal umgewandelt. Das Licht trifft auf einen Lichtempfänger, der es wieder in ein elektrisches Signal umwandelt.
Warum Optokoppler in SPS?
Der Optokoppler Opto2-01 wird zum wirkungvollem Schutz vor Überspannungen und Überschlägen von Signalleitungen in z.B. SPS-Steueranlagen eingesetzt. Dieses wird durch die galvanische Trennung der Signale an den integrierten Optokopplern erreicht.
Was ist 4N35?
4N35 von Vishay ist ein Optokoppler mit Fototransistor-Ausgang und Sockelanschluss in 6-poliger DIP-Bauform zur Durchsteckmontage. Jeder Optokoppler verfügt über eine Galliumarsenid-Infrarot-LED und einen NPN-Silizium-Fototransistor.
Wann trennverstärker?
Trennverstärker oder Isolationsverstärker werden immer dann zur galvanischen Trennung eingesetzt, wenn diese durch Übertrager nicht möglich oder erwünscht ist. Trennverstärker können im Gegensatz zu Übertragern auch Gleichspannungssignale übertragen.
Wo wird ein Optokoppler eingesetzt?
Ein Optokoppler wird an Orten eingesetzt, bei denen es erforderlich ist, dass die Stromkreise mittels der galvanischen Trennung von einander abgesondert werden.
Welche Vor und Nachteile haben Optokoppler gegenüber Relais?
Im Vergleich zu einem Relais verursacht der Optokoppler im Ausgangskreis wesentlich höhere Spannungsausfälle und es ist nur eine Stromrichtung möglich. Auch sind der Ausgangs-und Eingangskreis gegenüber Störimpulsen und einer Überbelastung empfindlicher.
Für was braucht man trennverstärker?
Ein Trennschaltverstärker oder Trennverstärker verhindert die elektrische Leitung zwischen zwei Stromkreisen, die aber Leistung oder Signale untereinander austauschen sollen. Es geht bei diesem Messverstärker um die sogenannte galvanische Trennung.
Was macht ein speisetrenner?
Berücksichtigt werden Speisetrennverstärker hauptsächlich zur galvanischen Entkopplung von Messkreisen und ebenso zur Anpassung von Messsignalen auf genormte Standards. Es werden Probleme durch Masseschleifen bzw. Potentialunterschiede zwischen Ein- und Ausgang vermieden.
Was macht ein trennwandler?
Ein Trennschaltverstärker oder Trennverstärker verhindert die elektrische Leitung zwischen zwei Stromkreisen, die aber Leistung oder Signale untereinander austauschen sollen. Es geht bei diesem Messverstärker um die sogenannte galvanische Trennung. Man spricht auch von einem Isolationsverstärker.
Wie hoch ist die Lebensdauer eines Optokopplers?
Der Sicherheitsfaktor ist mindestens 2, da die Lebensdauer eines Optokopplers in der Regel auf die halbe optische Leistung ausgelegt ist. Je höher unser Sicherheitsfaktor, desto höher die Lebensdauer des Bauteils. Man sollte daher zwischen einem Wert von 2-5 auswählen.
Wie hoch ist die Sperrspannung eines Optokopplers?
Leuchtdioden vertragen nur Sperrspannungen von ca. 5 V, bei Fototransistoren liegt die zulässige Sperrspannung bei 30 V bis 50 V. Digitale Optokoppler arbeiten empfängerseitig meist an einer Spannung von 5 V. CMTI (Common mode transient Immunity) ist die Impulsfestigkeit des Optokopplers und wird in kV/µs angegeben.
Wie hoch ist die Grenzfrequenz für einen Optokoppler?
Der Strom gängiger Optokoppler beträgt 50 mA durch die Infrarot-LED, um den Fototransistor voll auszusteuern. Seltener verbaute Optokoppler für einen Ansteuerungsstrom bis 10 mA benutzen dafür einen integrierten Darlingtontransistor. Die Grenzfrequenz ist die höchste Arbeitsfrequenz, bei der ein Optokoppler noch arbeiten kann.
Wie hoch ist der Isolationswiderstand zwischen den Optokopplern?
Der Isolationswiderstand zwischen dem Eingang und dem Ausgang ist sehr hoch und beträgt bis zu 10 13 Ω. Der Strom gängiger Optokoppler beträgt 50 mA durch die Infrarot-LED, um den Fototransistor voll aufzusteuern.