Wann darf ich Sinus verwenden?

Wann darf ich Sinus verwenden?

Wenn du also die Länge einer Seite durch den Sinus des gegenüberliegenden Winkels teilst, kommt immer das selbe Ergebnis heraus. Wenn in deinem Dreieck also mindestens drei Größen gegeben sind und ein „Seiten-Winkel-Paar“ dabei ist, kannst du den Sinussatz verwenden, um die anderen Größen zu berechnen.

Warum gilt der Sinussatz auch für rechtwinklige Dreiecke?

Der Sinussatz und der Kosinussatz sind zwei Erweiterungen der trigonometrischen Funktionen, die an sich ja nur in rechtwinkligen Dreiecken definiert sind, auf beliebige Dreiecke. Der „Trick“ dabei ist in beiden Fällen, das Dreieck durch eine Höhe in zwei rechtwinklige Teildreiecke zu „teilen“.

Wie stellt man den Sinussatz um?

Man kann den Sinussatz auch umstellen und wie folgt schreiben: s i n ( α ) ⋅ b = s i n ( β ) ⋅ a sin(\alpha) \cdot b = sin(\beta) \cdot a sin(α)⋅b= sin(β)⋅a.

Wie zeigt man dass ein Dreieck nicht rechtwinklig ist?

Es gilt a2 + b2≠ c2, also ist das Dreieck nicht rechtwinklig.

Wann benutze ich den Sinus und wann den Kosinussatz?

Der Vorteil des Kosinussatzes ist, dass die Werte immer eindeutig sind. Man erhält für die Winkelberechnung einen Wert von 0° bis 180° . Beim Sinussatz hingegen erhält man stets einen Winkel von 0° bis 90° und muss das Ergebnis rechnerisch bzw. mit der gegebenen Zeichnung überprüfen.

Kann man den Sinussatz in einem rechtwinkligen Dreieck benutzen?

Bisher hast du mit Sinus, Kosinus und Tangens nur im rechtwinkligen Dreieck gerechnet. Aber es gibt eine Regel, mit der du mithilfe des Sinus in jedem Dreieck die Seitenlängen und Winkel berechnen kannst! Das ist der Sinussatz. Den kannst du dir sogar selbst herleiten.

Wann bekomme ich mit dem Sinussatz mehrere Lösungen?

Liegt der Winkel der größeren Seite gegenüber – eine Lösungsmöglichkeit. Liegt der Winkel der kleineren Seite gegenüber – entweder zwei Lösungen, eine Lösung oder gar keine Lösung.

Wie definiert man den Sinus in der Mathematik?

In der Schule definiert man den Sinus zunächst im rechtwinkligen Dreieck für Winkel zwischen 0° und 90°. Danach wird die Definition mit Hilfe des Einheitskreises auf alle Winkel erweitert. Der Sinus ist eine Winkelfunktion. Verhältnis zweier Seiten im rechtwinkligen Dreieck. Ein Verhältnis entspricht in der Mathematik dem Quotienten zweier Größen.

Wie definiert man den Sinus in der Schule?

In der Schule definiert man den Sinus zunächst im rechtwinkligen Dreieck für Winkel zwischen 0° und 90°. Danach wird die Definition mit Hilfe des Einheitskreises auf alle Winkel erweitert. Der Sinus ist eine Winkelfunktion. Verhältnis zweier Seiten im rechtwinkligen Dreieck.

Was versteht man unter Sinus?

Unter dem Sinus eines beliebigen Winkels α versteht man die y -Koordinate des zu α gehörenden Punktes P auf dem Einheitskreis. Wir haben den Sinus zunächst nur über rechtwinklige Dreiecke definiert, weshalb sich unsere Betrachtung auf Winkel zwischen 0 ∘ und 90 ∘ beschränkte.

Wie kann ich deine Sinuswerte berechnen?

Sinus berechnen. Um Sinuswerte mit Hilfe deines Taschenrechners zu berechnen, macht es keinen Unterschied, ob die Winkel im Gradmaß (z. B. (90°)) oder im Bogenmaß (z. B. (frac{pi}{2})) gegeben sind. Wichtig ist nur, dass du in das Setup deines Taschenrechner gehst und dort die richtige Einstellung wählst:

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben