Wann liegt eine Punktsymmetrie vor?
Es gibt zwei Arten von Symmetrie: Punktsymmetrie und Achsensymmetrie. Eine Funktion ist punktsymmetrisch, wenn es einen irgendeinen Punkt gibt, an dem man die Funktion derart spiegeln kann, dass als Spiegelbild wieder die gleiche Funktion rauskommt.
Wie begründet man Punktsymmetrie?
Die Funktion f(x) = x2 + x soll auf eine Punktsymmetrie zum Ursprung untersucht werden. Dazu ermitteln wir zunächst f(-x) und -f(x). Danach setzen wir f(-x) = -f(x). Ist die Gleichung korrekt, dann liegt eine Punktsymmetrie vor.
Wann ist eine potenzfunktion punktsymmetrisch zum Ursprung?
Eine allgemeine Potenzfunktiong mit ungerademGrad ist eine ungeradeFunktion. Es gilt g(-x)=-g(x)für alle reellen Zahlen x. Jeder Punkt x | g x wird bei Punktspiegelungam Koordinatenursprung auf den Punkt – x | – g x abgebildet. Der Graph ist also punktsymmetrischmit dem Punkt 0 | 0 als Symmetriezentrum.
Wie überprüfe ich ob ein Graph punktsymmetrisch ist?
Punkten gibt es einfache Formeln um Symmetrie nachzuweisen: Bei einer Achsensymmetrie zur y-Achse muss gelten: f ( − x ) = f ( x ) \sf f(-x)=f(x) f(−x)=f(x) Bei Punktsymmetrie zum Ursprung muss gelten: f ( − x ) = − f ( x ) \sf f(-x)=-f(x) f(−x)=−f(x)
Wie erkennt man eine potenzfunktion?
Eine Potenzfunktion f (mit natürlichem Exponenten) ist eine Funktion mit einem Funktionsterm der Form f(x)=xn . Die natürliche Zahl n ist der Grad der Potenzfunktion, man spricht auch von einer Potenzfunktion vom Grad n . Eine allgemeine Potenzfunktion f hat einen Funktionsterm der Form f(x)=axn .
Wann ist etwas achsensymmetrisch und wann punktsymmetrisch?
Eine Figur ist punktsymmetrisch, wenn sie einen Punkt hat, um den die Figur so um 180° gedreht werden kann, dass sie mit der Ausgangsfigur zur Deckung kommt. Eine Figur ist achsensymmetrisch, wenn sie bei einer Spiegelung an einer Geraden in sich selbst übergeht. Die Gerade heißt Spiegelachse oder einfach Achse.