Wann muss ich eine Stammfunktion bilden?
Eine Funktion F ist eine Stammfunktion einer Funktion f, wenn für alle x ∈ D gilt: F'(x)=f(x). Die Umkehrung des Ableitens ist das Bilden von Stammfunktionen und wird deshalb auch umgangssprachlich Aufleiten genannt.
Für was braucht man die stammfunktion?
Stammfunktionen braucht man, um Flächen zwischen Funkionen zu berechnen. Im Gegensatz zu Ableitungen, wo man jede Funktion ableiten kann, kann man nicht jede Funktion integrieren [= „aufleiten“ = „Stammfunktion bilden“].
Was bedeutet eine stammfunktion?
Als Stammfunktion einer Funktion bezeichnet man eine differenzierbare Funktion deren Ableitungsfunktion [mehr dazu] mit übereinstimmt. Man sagt Stammfunktion, wenn man eine konkrete Stammfunktion meint und unbestimmtes Integral, wenn man die Gesamtheit aller Stammfunktionen, . Das unbestimmte Integral von ist .
Ist die Stammfunktion einer stetigen Funktion differenzierbar?
Wenn die Funktion f eine Stammfunktion F besitzt, dann gilt doch nach Definition diff(F,x) = f ! D.h. Stammfunktionen sind differenzierbar und damit insbesondere stetig.
Was besagt der Hauptsatz der Differential und Integralrechnung?
Der Hauptsatz der Differential- und Integralrechnung (kurz HDI) oder Fundamentalsatz der Analysis führt die Berechnung bestimmter Integrale auf die Berechnung unbestimmter Integrale (also auf die Ermittlung von Stammfunktionen) zurück.
Kann eine Fläche negativ sein?
Eine Fläche kann nicht negativ sein, nur ein Integral.
Was ist die flächenbilanz?
Integral als Flächenbilanz Im Allgemeinen ist das Integral nur die Flächenbilanz, also die Differenz von der Fläche oberhalb der x-Achse und der Fläche unterhalb der x-Achse. Die einzelnen Flächen werden dann betragsmäßig addiert; die Maßzahl nicht orientierten Flächeninhalts ist immer positiv.
Wie berechnet man die flächenbilanz?
◦ Man betrachtet alle Teilflächen und addiert sie gedanklich zusammen. ◦ Dabei rechnet man Flächen unter der x-Achse als negative Zahl. ◦ Flächen oberhalb der x-Achse rechnet man als positive Zahl. ◦ Die Summe aus negativen und positiven Werten ist die Flächenbilanz.
Wie berechne ich den Flächeninhalt einer Funktion?
Die Fläche zwischen zwei Funktionen berechnet man immer, indem man obere minus untere Funktion rechnet und dann integriert. Die Grenzen der Fläche sind die Schnittpunkte der beiden Funktionen.