Was behandeln wir mit Vektoren?
Im folgenden behandeln wir das Skalieren von Vektoren, das Addieren und Subrahieren, die geometrische Interpretation der Operationen (in der Ebene), den Vektor zwischen zwei Punkten sowie die Definition des Gegenvektors. Natürlich kann man mit Vektoren auch rechnen.
Was gibt es für zwei Vektoren?
Speziell für die Vektoren gibt es das Skalar- und das Kreuzprodukt. Die Addition und Subtraktion zweier Vektoren: Zwei Vektoren werden koordinatenweise addiert oder subtrahiert. Du kannst einen Vektor mit einem Skalar multiplizieren: Hierfür multiplizierst du jede Koordinate mit dem Skalar. \\vec a a linear abhängig.
Was sind Vektoren in der Physik?
In der Physik verwendet man Vektoren auch zur Darstellung von Größen, denen neben einem Betrag auch eine Richtung zugeordnet ist. Man unterscheidet oft zwischen Ortsvektoren und Richtungsvektoren: Ortsvektoren sind Vektoren, die von einem festen Bezugspunkt (bspw. dem Koordinatenursprung) auf einen gegebenen Punkt zeigen.
Wie kann man Vektoren einführen?
Vektoren kann man über viele verschiedene Wege einführen. Beliebt sind Vektoren, hergeleitet aus der Parallelverschiebung, in der Geometrie, aus Punkten (sogenannte Ortsvektoren, ebenfalls aus der Geometrie) oder allgemein als Elemente eines Vektorraumes (LINK). Wir beginnen anders, für uns sind Vektoren zu Beginn nur Zahlentupel.
Was ist ein Vektorraum?
Wir beginnen anders, für uns sind Vektoren zu Beginn nur Zahlentupel. Ein Vektor ist ein Zahlentupel (Zahlenpaar) ( x y) mit x, y ∈ R. Die Menge aller dieser Vektoren bezeichnen wir als den Vektorraum R 2 .\\footnote {Eine Einführung über Vektorräume findet sich hier} Beispiele dafür sind die Vektoren ( 0 0), ( 2 1), ( − 1 10000) sowie ( − 3 π).
Was ist ein Vektor niedergeschrieben?
Ein Vektor, geometrisch betrachtet, ist eine bestimmte Länge in eine bestimmte Richtung abgetragen. Intuitiv niedergeschrieben gilt daher im obigen Beispiel dabei ist B → der Weg zum Punkt B und A D → die Richtung von A zu D, ihre Komponenten konnten wir ablesen.