Was gibt mir Sinus an?

Was gibt mir Sinus an?

Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete (Kathete, die dem Winkel gegenüberliegt) zur Länge der Hypotenuse (Seite gegenüber dem rechten Winkel). Der Kosinus ist das Verhältnis der Länge der Ankathete (das ist jene Kathete, die einen Schenkel des Winkels bildet) zur Länge der Hypotenuse.

Wann benutzt man Sinus Kosinus und Tangens?

Der Sinus, der Cosinus und der Tangens werden angewendet, um Winkel und Seiten rechtwinkliger Dreiecke zu bestimmen.

Was rechne ich mit Sinus Kosinus und Tangens?

Die Winkelfunktionen Sinus, Kosinus und Tangens verwendest du, wenn du die Länge einer Seite oder die Größe eines Winkels in einem rechtwinkligen Dreieck berechnen möchtest.

Wann wende ich den Sinus an?

Beziehungen trigonometrischer Funktionen

Sinus Kosinus Tangens
sin(180°+α)=−sin(α) cos(180°+α)=−cos(α) tan(180°+α)=tan(α)
sin(180°−α)=sin(α) cos(180°−α)=−cos(α) tan(180°−α)=−tan(α)
sin(360°−α)=−sin(α) cos(360°−α)=cos(α) tan(360°−α)=−tan(α)

Was ist der Sinuswert?

Eine Funktion ist eine eindeutige Zuordnung. Bei der Sinusfunktion wird dem Winkel im rechtwinkligen Dreieck das Verhältnis der Gegenkathete zur Hypotenuse zugeordnet. Das Verhältnis nennt man Sinuswert oder kurz Sinus.

Wann verwendet man den Sinus und Kosinussatz?

Der Vorteil des Kosinussatzes ist, dass die Werte immer eindeutig sind. Man erhält für die Winkelberechnung einen Wert von 0° bis 180° . Beim Sinussatz hingegen erhält man stets einen Winkel von 0° bis 90° und muss das Ergebnis rechnerisch bzw. mit der gegebenen Zeichnung überprüfen.

Wie berechnet man eine Seite mit Sinus?

Sinussatz: Seitenlänge berechnen

  1. Verwendet wird für diese Rechnung die Seite a mit einer Länge von 3 cm und einem Winkel (sin a) von 60°.
  2. a / sin a = c / sin y.
  3. c = a x sin y / sin a.
  4. c = 3 cm x sin 45° / sin 60°
  5. c = 2,45 cm.
  6. Auf diese Weise ermitteln Sie die Seitenlänge.

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben