Was ist die Steigung der Tangente?

Was ist die Steigung der Tangente?

Die Tangente berührt den Funktionsgraphen an einem Punkt. Die Steigung des Berührungspunktes ist die gleiche wie die Steigung der Tangente. Die Steigung des Berührungspunktes ist flacher als die Steigung der Tangente.

Wie kann man eine Tangente berechnen?

Tangente berechnen. Für eine Funktion kann man die Tangente bzw. die Gleichung der Tangente wie folgt berechnen: Die Funktion sei f(x) = x 2 + 2x. Es soll die Gleichung der Tangente berechnet werden, welche die Kurve der Funktion im Punkt x = 1 berührt. Zunächst x = 1 in die Funktion einsetzen: f(1) = 1 2 + 2 × 1 = 1 + 2 = 3.

Wie erhält man die zugehörigen Tangente?

Die zugehörigen erhält man, wenn man die jeweiligen -Werte in einsetzt. Es folgt Die Berührpunkte sind somit Aufgrund der gegebenen Steigung ist der Ansatz für die Tangente gegeben durch . Setzt man die beiden Berührpunkte ein, so erhält man die beiden (waagrechten) Tangenten und .

Was sind die Berührpunkte der Tangente?

Die Berührpunkte sind also: Für beide Fälle ist der Ansatz für die Tangente gleich . Setzt man den ersten Berührpunkt ein, so erhält erhält man: Beim zweiten Berührpunkt erhält man Es gibt also zwei mögliche Tangenten an , deren Steigung gleich 9 ist.

Vorgehensweise Tangente berechnen: Den x-Wert in die Funktionsgleichung einsetzen, um den dazugehörigen y-Wert zu bestimmen. Die Funktion ableiten. Den x-Wert in die Ableitung einsetzen und ausrechnen. Die Werte in die allgemeine Gleichung einer linearen Funktion einsetzen und nach $n$ auflösen. Die Tangentengleichung notieren.

Was ist eine besondere Art der Tangente?

Eine besondere Art der Tangente ist die, die ihren Berührpunkt mit der Funktion an einem Extrempunkt oder Sattelpunkt hat. Da bei diesen Punkten die Eigenschaft gilt, besitzen sie eine waagerechte Tangente, also eine Tangente mit der Steigung null. Damit lautet die Tangentengleichung an einem Extrempunkt oder Sattelpunkt

Was ist der Ansatz für die Tangentengleichung?

Aufgrund der vorgegebenen Steigung ist der Ansatz für die Tangentengleichung gleich . Das wird nun bestimmt, indem der Berührpunkt in die Gerade eingesetzt wird: Daraus folgt die Gleichung der gesuchten Tangente als . Zunächst leitet man ab und erhält .

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben