Was ist ein Koordinat?
1) Mathematik: Zahl, welche die Entfernung eines Punktes von einer Hyperebene (zum Beispiel Koordinatenachse oder -ebene) in einem geometrischen Raum angibt. 2) Geographie, Kartographie: Zahl, welche die Entfernung eines Punktes auf der Erdoberfläche vom Äquator oder Nullmeridian angibt.
Wo liegt der Koordinatenursprung?
Koordinatenursprung (mathematisches Kürzel: KOU) oder Ursprung bezeichnet den Punkt in einem Koordinatensystem oder einer Karte, an dem alle Koordinaten den Wert Null annehmen. Er wird auch Nullpunkt oder bei Polarkoordinaten Pol genannt.
Was ist punktsymmetrisch zum Ursprung?
Als punktsymmetrisch werden Körper bezeichnet, die aus zwei Hälften bestehen, wobei die eine Hälfte durch Drehung um 180° die andere Hälfte überdeckt. Punktsymmetrisch sind zum Beispiel die Buchstaben „N“ und „Z“ oder ein Parallelogramm.
Wie erkennt man Punktsymmetrie zum Ursprung?
Die Funktion f(x) = x2 + x soll auf eine Punktsymmetrie zum Ursprung untersucht werden. Dazu ermitteln wir zunächst f(-x) und -f(x). Danach setzen wir f(-x) = -f(x). Ist die Gleichung korrekt, dann liegt eine Punktsymmetrie vor.
Wann ist eine potenzfunktion punktsymmetrisch zum Ursprung?
Der Graph der allgemeinen Potenzfunktion g mit g(x)=116×3 ist punktsymmetrisch zum Koordinatenursprung. Es gilt: g(-4)=-4=-g(4) .
Wie erkennt man eine punktsymmetrie?
Eine Figur heißt punktsymmetrisch, wenn sie durch die Spiegelung an einem Punkt, dem sogenannten Symmetriepunkt oder Symmetriezentrum, auf sich selbst abgebildet wird. Es handelt sich um eine Drehung der Figur um 180°.
Wie erkennt man Achsensymmetrie und punktsymmetrie?
Symmetrie nachweisen Um eine Funktion f(x) auf Symmetrie zu untersuchen, bildest du als erstes f(−x). Lässt sich dieser Ausdruck in f(x) umformen, ist der Graph achsensymmetrisch zur y-Achse. Lässt sich dieser Ausdruck dagegen in −f(x) umformen, ist der Graph punktsymmetrisch zum Ursprung.
Was ist eine Punktsymmetrische Figur?
Eine Figur ist punktsymmetrisch, wenn du sie um 180° drehen kannst, ohne dabei ihr Aussehen zu verändern. Wenn du eine Figur um 180° drehst, stellst du sie einfach auf den Kopf. Dabei drehst du die Figur um ein Spiegelzentrum oder Spiegelpunkt.
Wie sieht ein Punktsymmetrischer Graph aus?
Der Graph einer Funktion ist punktsymmetrisch zum Ursprung genau dann, wenn für alle x gilt f(x)=-f-(-x). Der Graph einer Funktion ist achsensymmetrisch zur y-Achse genau dann, wenn für alle x gilt f(x)=f(-x).
Wie wird die Symmetrie am Graphen untersucht?
Man kann eine Funktion auf ihr Symmetrieverhalten untersuchen, indem man einfach f(-x) ausrechnet und vergleicht, ob das Ergebnis mit f(x) oder -f(x) übereinstimmt. Dabei muss für x auch -x gelten. Eine Funktion kann natürlich nicht nur bezüglich der Y-Achse, bzw. des Ursprungs ein Symmetrieverhalten zeigen.
Wie erkennt man ob ein Graph symmetrisch ist?
Symmetrie zur allgemeinen Achse Ein Graph kann auch zu einer allgemeinen Achse symmetrisch sein. Symmetrie zu einer allgemeinen Achse kann man dann nachweisen, wenn man die Gleichung der Achse gegeben hat oder sie aus einem Graphen ablesen kann. Die y-Achse ist der Spezialfall c = 0 \sf c=0 c=0.
Welche Symmetrien zeigt der Graph der Funktion?
Der Graph einer Funktion f ist achsensymmetisch zur vertikalen Geraden x = a, wenn für alle x∈Df gilt: f(a – x) = f(a + x). Der Graph einer Funktion f ist punktsymmetrisch bezüglich des Punkts P(a|b), wenn für alle x∈Df gilt: b – f(a – x) = f(a + x) – b. Beispiele: f:x↦(x−2)2, x∈R.
Welche Funktion hat einen zur Y-Achse symmetrischen Graphen?
Ganzrationale Funktionen haben einen zur y-Achse symmetrischen Graphen, wenn in der Normalform alle Exponenten gerade sind. Der Graph der Funktion f(x)=0x3 + 1×2 + 2 ist also symmetrisch zu y-Achse.