Was ist eine lineare Programmierung?

Was ist eine lineare Programmierung?

Lineare Programmierung (LP) (auch lineare Planungsrechnung, lineare Optimierung) ist die Minimierung oder Maximierung einer Zielfunktion unter Beachtung verschiedener Nebenbedingungen ( Restriktionen ), wobei die Variablen in Zielfunktion und Nebenbedingungen nur in der ersten Potenz auftreten.

Wie sieht eine lineare Funktion aus?

Eine lineare Funktion sieht also zum Beispiel so aus: f(x)= 2x+5 f ( x) = 2 x + 5. Allgemein schreibt man die Funktionsgleichung einer linearen Funktion so: f(x)=mx+n f ( x) = m x + n. Dabei ist m m die Steigung der Funktion und n n der y y -Achsenabschnitt.

Was sind die Eigenschaften einer linearen Funktion?

Zu den Eigenschaften einer linearen Funktion gehören vor allem ihr Graph, die Steigung der Funktion und ihr (boldsymbol y)-Achsenabschnitt. Für die Darstellung linearer Funktionen als Graphen in einem Koordinatensystem gilt: Der Graph einer linearen Funktion ist immer eine Gerade, also eine nicht gebogene Linie.

Was ist der Dimensionssatz für lineare Abbildungen?

Der Dimensionssatz für lineare Abbildungen. Satz (Dimensionssatz für lineare Abbildungen). Seien V, W Vektorräume, sei f : V → W eine lineare Abbildung. Ist V endlich erzeugt, so sind auch Kern (f) und Bild (f) endlich erzeugt und es gilt. dim Kern (f) + dim Bild (f) = dim V.

Wie kann die lineare Optimierung eingesetzt werden?

Innerhalb der mathematischen Spieltheorie kann die lineare Optimierung dazu verwendet werden, optimale Strategien in Zwei-Personen-Nullsummenspielen zu berechnen. Dabei wird für jeden Spieler eine Wahrscheinlichkeitsverteilung berechnet, bei der es sich um ein zufälliges Mischungsverhältnis seiner Strategien handelt.

Was ist der Begriff „Programmierung“?

Der Begriff „Programmierung“ ist eher im Sinne von „Planung“ zu verstehen als im Sinne der Erstellung eines Computerprogramms. Er wurde schon Mitte der 1940er-Jahre von George Dantzig, einem der Begründer der linearen Optimierung, geprägt, bevor Computer zur Lösung linearer Optimierungsprobleme eingesetzt wurden.

Was ist die Grundidee der linearen Optimierung?

Die Grundidee besteht darin, von einer Ecke des Polyeders zu einer benachbarten Ecke mit besserem Zielfunktionswert zu laufen, bis dies nicht mehr möglich ist. Da es sich bei der linearen Optimierung um ein konvexes Optimierungsproblem handelt, ist die damit erreichte lokal optimale Ecke auch global optimal.

Was sind die Eigenschaften von linearen Programmen?

Viele Eigenschaften linearer Programme lassen sich auch als Eigenschaften von Polyedern interpretieren und auf diese Art geometrisch motivieren und beweisen. Der Begriff „Programmierung“ ist eher im Sinne von „Planung“ zu verstehen als im Sinne der Erstellung eines Computerprogramms.

Was ist die Grundidee der Linearen Programmierung?

Grundidee der linearen Programmierung ist die Optimierung einer linearen Funktion mit n Freiheitsgraden, die durch lineare Gleichungen und Ungleichungen eingeschr¨ankt ist. Diese Einschr¨ankungen k ¨onnen z.B. widerspr ¨uchliche Bedingungen oder beschr ¨ankte Ressourcen darstellen.

Die lineare Optimierung oder lineare Programmierung ist eines der Hauptverfahren des Operations Research und beschäftigt sich mit der Optimierung linearer Zielfunktionen über einer Menge, die durch lineare Gleichungen und Ungleichungen eingeschränkt ist. Häufig lassen sich lineare Programme (LPs)…

Wie wurde die Methode der linearen Optimierung entwickelt?

Die Methode der linearen Optimierung wurde 1939 von dem sowjetischen Mathematiker Leonid Witaljewitsch Kantorowitsch in seinem Aufsatz „ Mathematische Methoden für die Organisation und Planung der Produktion “ eingeführt. Kurz danach veröffentlichte der Amerikaner Frank L. Hitchcock eine Arbeit zu einem Transportproblem.

Was ist die lineare Optimierung in der Produktion und Logistik?

Die lineare Optimierung ist in der Produktion & Logistik vielseitig einsetzbar. Sie löst Produktions- und Transportprobleme und führt im besten Fall zu einer oder mehreren optimalen Lösungen. Es kann allerdings auch vorkommen, dass durch die Berechnung keine optimale Lösung gefunden wird, wenn diese beispielsweise gar nicht existiert.

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben