Was kann der Normalenvektor?

Was kann der Normalenvektor?

In der Analysis und in der Differentialgeometrie ist der Normalenvektor zu einer ebenen Kurve (in einem bestimmten Punkt) ein Vektor, der auf dem Tangentialvektor in diesem Punkt orthogonal (senkrecht) steht. Die Gerade in Richtung des Normalenvektors durch diesen Punkt heißt Normale, sie ist orthogonal zur Tangente.

Was sind die typischen Ebenen?

Typische Ebenen sind dabei die xy-, die xz- und die yz-Ebene. Die xy-Ebene ist dabei die Ebene, die durch die x und die y-Achse aufgespannt wird. Sie ist die Ebene die wir üblicherweise im 2D-Raum benutzen. Die xz-Ebene ist dementsprechend die Ebene die durch die x und z-Achse aufgespannt wird. Bei der yz-Ebene verhält es sich entsprechend.

Was sind Ebenen im mathematischen Sinne?

Ebenen. Eine Ebene ist im mathematischen Sinne ein flaches, ebenes Objekt. Die Ebene selbst hat dabei nur zwei Dimensionen, kann sich aber natürlich im dreidimensionalen Raum befinden. Typische Ebenen sind dabei die xy-, die xz- und die yz-Ebene. Die xy-Ebene ist dabei die Ebene, die durch die x und die y-Achse aufgespannt wird.

Was sind die Ebenen im dreidimensionalen Raum?

Die Ebene selbst hat dabei nur zwei Dimensionen, kann sich aber natürlich im dreidimensionalen Raum befinden. Typische Ebenen sind dabei die xy-, die xz- und die yz-Ebene. Die xy-Ebene ist dabei die Ebene, die durch die x und die y-Achse aufgespannt wird. Sie ist die Ebene die wir üblicherweise im 2D-Raum benutzen.

Wie ist die Lage zwischen zwei Ebenen zu verstehen?

Die verschiedenen Lagebeziehungen zwischen zwei Ebenen zu verstehen ist ähnlich wichtig wie bei zwei Geraden im Raum. Die Lage zweier Ebenen zueinander muss man immer wieder in Aufgaben überprüfen – und teilweise kann man sich so auch viel unnötige Rechenzeit sparen. Ebenen sind identisch. Man sagt auch: Sie beschreiben die selben Punkte.

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben