Was sagt eine Sekante aus?
Die Sekante schneidet eine Funktion in zwei Punkten. Im Sachzusammenhang gesehen beschreibt die Steigung der Sekante die durchschnittliche Änderung in einem Bereich, der durch die Schnittpunkte und der Geraden mit der Funktion gegeben ist.
Wie berechnet man die Sekantensteigung?
Die Sekantensteigung bzw. mittlere Steigung entspricht dem Differenzenquotienten: Sekantensteigung = f(x2) – f(x1) / x2 – x1 = (8 – 3) / (2 – 1) = 5/1 = 5. Diese Sekantensteigung gibt an, wie sich der Funktionswert zwischen den beiden Punkten x1 = 1 und x2 = 2 ändert, nämlich um 5 (von 3 auf 8).
Was ist eine Steigungsfunktion?
Die Steigung einer Funktion (auch genannt Anstieg) ist ein Maß dafür, wie steil der Graph einer Funktion ansteigt oder abfällt. Mathematisch lässt sich die Steigung beschreiben als das Verhältnis von der Abweichung in y-Richtung zu der Abweichung in x-Richtung.
Ist eine sekante?
In der Elementargeometrie versteht man unter einer Sekante eine Gerade, die einen Kreis in zwei Punkten schneidet. Eine Gerade, die genau einen Punkt mit dem Kreis gemeinsam hat, heißt Tangente; eine Gerade, die keinen gemeinsamen Punkt mit dem Kreis hat, heißt Passante.
Was sagt eine Tangente aus?
Eine Tangente (von lateinisch: tangere ‚berühren‘) ist in der Geometrie eine Gerade, die eine gegebene Kurve in einem bestimmten Punkt berührt. Beispielsweise ist die Schiene für das Rad eine Tangente, da der Auflagepunkt des Rades ein Berührungspunkt der beiden geometrischen Objekte, Gerade und Kreis, ist.
Warum ist die Steigung der Tangente gleich der Steigung des Graphen im Punkt P?
Hierbei ist eine Tangente zunächst anschaulich als Gerade definiert, die sich dem Graphen in einer Umgebung des Berührungspunktes möglichst gut anschmiegt. Durch diese Definition ist die Steigung eines Graphen in einem Punkt zurückgeführt auf die Steigung einer Geraden.