Was sind die Nukleinsäuren in der Erbinformation?
Die Nukleinsäuren bilden neben Proteinen, Kohlenhydraten und Fetten die vierte große Gruppe der Biomoleküle. Ihr bekanntester Vertreter ist die Desoxyribonukleinsäure (DNA), der Speicher der Erbinformation.
Wie unterscheidet man Nukleinsäuren von RNA?
Man unterscheidet je nach der Beschaffenheit der Nukleotid-Zucker DNA (Desoxyribo-Nukleinsäure) von RNA (Ribo-Nukleinsäure). Die Nukleinsäuren sind für Speicherung und Verarbeitung der genetischen Information von entscheidender Bedeutung, wobei ihre Fähigkeit zur spezifischen Basenpaarung eine besondere Rolle spielt.
Wie kann man die Nukleinsäure auftrennen?
Unter physiologischen Bedingungen ( pH 7) ist die Nukleinsäure aufgrund dieses negativ geladenen Sauerstoffatoms insgesamt ein großes Anion. Bei der Auftrennung von Nukleinsäuren nach ihrer Größe kann man daher ein elektrisches Feld nutzen, in dem Nukleinsäuren grundsätzlich zur Anode wandern (siehe Agarose-Gelelektrophorese ).
Was ist die Sekundärstruktur bei Nukleinsäuren?
Als Sekundärstruktur bezeichnet man bei Nukleinsäuren die räumliche Ausrichtung. Während die Primärstruktur (die Sequenz) die Informationen speichert, bestimmt die Sekundärstruktur über Größe, Haltbarkeit und auch Zugriff auf die gespeicherten Informationen. Die einfachste räumliche Struktur ist der Doppelstrang.
Was ist der Grundtyp der Nukleinsäuren?
Ihr bekanntester Vertreter als Grundtyp der Nukleinsäuren ist die Desoxyribonukleinsäure (DNS bzw. DNA), der Speicher der Erbinformation. Neben ihrer Aufgabe als Informationsspeicher können die als „Schlüsselmoleküle des Lebens“ geltenden Nukleinsäuren auch als Signalüberträger dienen oder biochemische Reaktionen katalysieren.
Was ist die chemische Beschaffenheit der Nucleinsäuren?
Die chemische Beschaffenheit der Nucleinsäuren (DNA und RNA) und ihr Aufbau aus sich wiederholenden Nucleotideinheiten ermöglicht ihre Funktion als Informationsträger und -vermittler.
Wie funktioniert die Auftrennung von Nukleinsäuren?
Bei der Auftrennung von Nukleinsäuren nach ihrer Größe kann man daher ein elektrisches Feld nutzen, in dem Nukleinsäuren grundsätzlich zur Anode wandern (siehe Agarose-Gelelektrophorese ). Ihr Aufbau verleiht der Nukleinsäure eine Polarität.