Was stellt ein Vektor dar?

Was stellt ein Vektor dar?

Im engeren Sinne versteht man in der analytischen Geometrie unter einem Vektor ein mathematisches Objekt, das eine Parallelverschiebung in der Ebene oder im Raum beschreibt. Ein Vektor kann durch einen Pfeil, der einen Urbildpunkt mit seinem Bildpunkt verbindet, dargestellt werden.

Was gibt es für Vektoren?

Vektoren

  • Ortsvektor.
  • Gegenvektor.
  • Verbindungsvektor.
  • Nullvektor.
  • Einheitsvektor.
  • Normalenvektor.

Was genau ist ein Vektor Mathe?

Ein Vektor bezeichnet eine Verschiebung in der Ebene oder im Raum und wird durch einen Pfeil repräsentiert, dessen Länge und Richtung genau die Länge und Richtung der Verschiebung ist.

Was zeigt skalarprodukt?

Das Skalarprodukt ist eine mathematische Verknüpfung, die zwei Vektoren eine Zahl (Skalar) zuordnet. Einfacher gesagt: Die Multiplikation zweier Vektoren (Skalarprodukt) ergibt eine reelle Zahl (Skalar).

Was stellt das kreuzprodukt dar?

Das Vektorprodukt ist die Verknüpfung zweier Vektoren, dessen Ergebnis wieder ein Vektor ist, der senkrecht auf den beiden Vektoren steht. Häufig wird das Vektorprodukt auch mit „Kreuzprodukt“ bezeichnet.

Was ist ein Vektor?

Ein Vektor ist ein Zahlentupel (Zahlenpaar) ( x y) mit x, y ∈ R. Die Menge aller dieser Vektoren bezeichnen wir als den Vektorraum R 2 .\\footnote {Eine Einführung über Vektorräume findet sich hier} Beispiele dafür sind die Vektoren ( 0 0), ( 2 1), ( − 1 10000) sowie ( − 3 π).

Welche Bewegungen werden durch Vektoren dargestellt?

Diese Bewegungen werden durch Vektoren beschrieben: Vektoren werden als Pfeile dargestellt. eine Länge: Diese ist in diesem Beispiel die Geschwindigkeit. Das untere Flugzeug fliegt doppelt so schnell. Deshalb ist der Vektor doppelt so lang. eine Richtung: Diese stimmt bei beiden Flugzeugen überein. Beide Flugzeuge fliegen waagerecht.

Was behandeln wir mit Vektoren?

Im folgenden behandeln wir das Skalieren von Vektoren, das Addieren und Subrahieren, die geometrische Interpretation der Operationen (in der Ebene), den Vektor zwischen zwei Punkten sowie die Definition des Gegenvektors. Natürlich kann man mit Vektoren auch rechnen.

Was ist ein Vektorraum?

Ein Vektor ist ein Zahlentupel (Zahlenpaar) (x y) mit x, y ∈ R. Die Menge aller dieser Vektoren bezeichnen wir als den Vektorraum R2.footnote {Eine Einführung über Vektorräume findet sich hier} Beispiele dafür sind die Vektoren (0 0), (2 1), (− 1 10000) sowie (− 3 π).

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben