Was versteht man unter Achsensymmetrischen Figuren?

Was versteht man unter Achsensymmetrischen Figuren?

Eine Figur ist achsensymmetrisch, wenn sie sich an einer Symmetrieachse (auch Spiegelachse) spiegeln lässt und die gespiegelte Hälfte genau mit der andern Hälfte übereinstimmt. Achsensymmetrie wird auch Spiegelsymmetrie genannt. Bei Funktionen wird die Symmetrieachse durch die y-Achse abgebildet.

Wie nennt man die spiegelachse noch?

Eine Achsenspiegelung (auch Geradenspiegelung) ist durch eine Gerade a (Spiegelachse oder kurz Achse) gegeben. Sie ordnet jedem Punkt P einen Bildpunkt P′ zu, der dadurch bestimmt ist, dass die Verbindungsstrecke [PP′] von der Achse a rechtwinklig halbiert wird.

Wie erkenne ich ob eine Figur punktsymmetrisch ist?

Eine Figur ist punktsymmetrisch, wenn du sie um 180° drehen kannst, ohne dabei ihr Aussehen zu verändern. Wenn du eine Figur um 180° drehst, stellst du sie einfach auf den Kopf. Dabei drehst du die Figur um ein Spiegelzentrum oder Spiegelpunkt. Daher kommt auch der Name Punktsymmetrie.

Wann ist eine Funktion symmetrisch zum Ursprung?

Symmetrie nachweisen Um eine Funktion f(x) auf Symmetrie zu untersuchen, bildest du als erstes f(−x). Lässt sich dieser Ausdruck in f(x) umformen, ist der Graph achsensymmetrisch zur y-Achse. Lässt sich dieser Ausdruck dagegen in −f(x) umformen, ist der Graph punktsymmetrisch zum Ursprung.

Was gibt es bei der Achsensymmetrie?

Es gibt bei Funktionen 2 wesentliche Arten von Symmetrie die ihr kennen müsst: Die Achsensymmetrie liegt vor, wenn die Funktion eine senkrechte Spiegelachse hat. diese Symmetrie kommt fast ausschließlich bei Funktionen mit geradem Exponenten und der Betragsfunktion vor.

Was ist eine weitere Form der Symmetrie?

Eine weitere Form der Symmetrie ist die Punktsymmetrie, auch Zentralsymmetrie genannt. Hier wird eine Funktion nicht entlang einer Achse sondern über einen Punkt gespiegelt. Eine Funktion gilt als punktsymmetrisch, wenn sie durch eine Spiegelung am Symmetriepunkt auf sich selbst abgebildet wird.

Was ist eine Punktsymmetrie?

Punktsymmetrie bedeutet, dass die Funktion einen Spiegelpunkt hat. An diesem Spiegeln sich alle Werte der Funktion. Punktsymmetrie liegt vor, wenn -f (x)=f (-x) ist Diese Symmetrie kommt unter anderem bei Funktionen mit ungeraden Exponenten vor

Welche Symmetrien gibt es im eindimensionalen?

Symmetrien im Eindimensionalen. Im Eindimensionalen, also auf einer Geraden, gibt es die Symmetrie eines einzelnen Punktes sowie die Symmetrie der Translation (Verschiebung).

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben