Welche Funktionen sind differenzierbar?

Welche Funktionen sind differenzierbar?

Eine Funktion ist differenzierbar, wenn sie an jeder Stelle x0 differenzierbar ist – heißt umgekehrt: Sobald es eine Stelle gibt, an der f(x) nicht differenzierbar ist, ist die gesamte Funktion nicht differenzierbar.

Welche Funktionen sind nicht differenzierbar?

Lexikon der Mathematik Nicht-Differenzierbarkeit liegt bei einer Funktion f:D→R an einer inneren Stelle a∈D⊂R vor, wenn der Differenzenquotient Qf (a, x) für D∍x→a in R nicht konvergiert.

Was bedeutet es wenn eine Funktion differenzierbar ist?

Differenzierbarkeit ist eine Eigenschaft von Funktionen, die darüber Auskunft gibt ob und wo sich eine Funktion ableiten lässt. Wir nennen dann diesen Grenzwert Ableitung an der Stelle x 0 \sf x_0 x0. Ist f an jeder Stelle der Definitionsmenge differenzierbar, so nennt man f differenzierbar.

Wann ist eine Funktion an einer Stelle differenzierbar?

Die Gleichung y=f(x0)+f'(x0)(x−x0) bestimmt eine Gerade mit der Steigung f'(x0) durch den Punkt (x0; f(x0)). Die Funktion f heißt in I differenzierbar, wenn sie in jedem Punkt von I differenzierbar ist. Die Funktion y’=f'(x) die jedem x0∈Ι die Ableitung f'(x) zugeordnet, heißt (erste) Ableitung von f.

Sind alle stetigen Funktionen differenzierbar?

Nicht jede stetige Funktion muss auch an allen Stellen differenzierbar sein! Jede Funktion, die an einer Stelle x0 differenzierbar ist, ist an dieser Stelle auch stetig.

Sind nicht stetige Funktionen differenzierbar?

Da jede differenzierbare Funktion stetig ist, ist umgekehrt jede unstetige Funktion (zum Beispiel eine Treppenfunktion oder die Dirichlet-Funktion) ein Beispiel für eine nicht differenzierbare Funktion. Es gibt aber auch Funktionen, die zwar stetig sind, aber nicht oder nicht überall differenzierbar.

Wann ist eine Funktion stetig aber nicht differenzierbar?

In der Mathematik bezeichnet man als Weierstraß-Funktion ein pathologisches Beispiel einer reellwertigen Funktion einer reellen Variablen. Diese Funktion hat die Eigenschaft, dass sie überall stetig, aber nirgends differenzierbar ist. Sie ist nach ihrem Entdecker Karl Weierstraß benannt.

Kann eine unstetige Funktion differenzierbar sein?

Wann ist der Funktion differenzierbar und wann ist sie stetig?

Eine Funktion ist stetig differenzierbar, wenn sie differenzierbar ist und ihre ->Ableitungsfunktion stetig ist. Beispiel: Die Funktion f mit f(x) = 2x³+5x²+10 besitzt die stetige Ableitung f‘ mit f'(x) = 6x²+10x. Alle ->ganzrationalen Funktionen sind stetig differenzierbar.

Welche Funktionen sind stetig differenzierbar?

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben