Wie funktionieren Matrizen?

Wie funktionieren Matrizen?

Matrizentests bestehen aus einer tabellarischen Anordnung von Figuren oder Zahlen, zwischen denen ein bestimmter Zusammenhang besteht: Die Elemente können pro Reihe, pro Spalte, diagonal oder in mehreren Richtungen miteinander verknüpft sein.

Warum gibt es eine rechts und eine linksseitige Multiplikation von Matrizen?

Um zwei Matrizen A und B miteinander zu multiplizieren, multiplizierst du jeden Zeilenvektor der linken Matrix mit jedem Spaltenvektor der rechten. Das bedeutet, dass die linke Matrix genauso viele Spalten haben muss wie die rechte Zeilen.

Was ist der Aufbau von Matrizen?

Aufbau von Matrizen. Matrizen bestehen aus m Zeilen und n Spalten, weshalb sie auch (m,n)-Matrizen genannt werden. Die Dimension einer einzelnen Matrix (Matrizen ist nur der Plural vom Begriff „Matrix“) mit m Zeilen und n Spalten ist (m times n).

Was ist die Dimension einer Matriz?

Matrizen bestehen aus m Zeilen und n Spalten, weshalb sie auch (m,n)-Matrizen genannt werden. Die Dimension einer einzelnen Matrix (Matrizen ist nur der Plural vom Begriff „Matrix“) mit m Zeilen und n Spalten ist $m \imes n$. \\begin{align*}

Wie kann eine Matrix-Multiplikation durchgeführt werden?

Damit eine solche Matrix-Vektor-Multiplikation durchgeführt werden kann, muss die Spaltenzahl der Matrix mit der Zahl der Komponenten des Vektors übereinstimmen. A = ( 3 2 1 1 0 2) ∈ 2 × 3 und x = ( 1 0 4) ∈ 3 × 1. Da die Matrix A ebenso viele Spalten besitzt, wie der Vektor x lang ist, ist das Matrix-Vektor-Produkt A ⋅ x durchführbar.

Wie funktioniert die Addition und Subtraktion von Matrizen?

Neu! Die Addition und Subtraktion von Matrizen lässt sich durchführen, wenn die beiden Matrizen jeweils vom gleichen Typ sind. Etwas unmathematischer ausgedrückt müssen diese die selbe „Gestalt“ aufweisen. Man addiert oder subtrahiert jeweils die entsprechenden Komponenten der beiden Matrizen.

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben