Wie geht der Cosinus?
Beziehungen trigonometrischer Funktionen
| Sinus | Kosinus | Tangens |
|---|---|---|
| sin(180°+α)=−sin(α) | cos(180°+α)=−cos(α) | tan(180°+α)=tan(α) |
| sin(180°−α)=sin(α) | cos(180°−α)=−cos(α) | tan(180°−α)=−tan(α) |
| sin(360°−α)=−sin(α) | cos(360°−α)=cos(α) | tan(360°−α)=−tan(α) |
Wann benutzt man Cosinus und wann Sinus?
Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete (Kathete, die dem Winkel gegenüberliegt) zur Länge der Hypotenuse (Seite gegenüber dem rechten Winkel). Der Kosinus ist das Verhältnis der Länge der Ankathete (das ist jene Kathete, die einen Schenkel des Winkels bildet) zur Länge der Hypotenuse.
Wann benutzt man Trigonometrie?
Ähnlich groß ist die Bedeutung der Trigonometrie für die Navigation von Flugzeugen und Schiffen und für die sphärische Astronomie, insbesondere für die Berechnung von Stern- und Planetenpositionen. In der Physik dienen Sinus- und Kosinus-Funktion dazu, Schwingungen und Wellen mathematisch zu beschreiben.
Was versteht man unter einem Cosinus?
Unter dem Cosinus eines beliebigen Winkels α versteht man die x-Koordinate des zu α gehörenden Punktes P auf dem Einheitskreis. Wir haben den Cosinus zunächst nur über rechtwinklige Dreiecke definiert, weshalb sich unsere Betrachtung auf Winkel zwischen 0° und 90° beschränkte.
Wie definiert man den Cosinus in der Schule?
In der Schule definiert man den Cosinus erst im rechtwinkligen Dreieck für Winkel zwischen 0° und 90°. Danach wird die Definition mit Hilfe des Einheitskreises auf alle Winkel erweitert.
Wie kann ich die Cosinuswerte berechnen?
Cosinus berechnen. Um Cosinuswerte mit Hilfe deines Taschenrechners zu berechnen, spielt es keine Rolle, ob die Winkel im Gradmaß (z. B. (90°)) oder im Bogenmaß (z. B. (frac{pi}{2})) gegeben sind. Wichtig ist nur, dass du in das Setup deines Taschenrechner gehst und dort die richtige Einstellung wählst:
Wie können Sinus und Cosinus differenziert werden?
Durch den Übergang vom Winkelmaß zum Bogenmaß können Sinus und Cosinus als Funktionen von R {displaystyle mathbb {R} } nach R {displaystyle mathbb {R} } erklärt werden. Es kann nachgewiesen werden, dass sie beliebig oft differenzierbar sind.