Wie ist die Äquivalenz berechtigt?
Die Äquivalenz im logischen Sinne ist gleichwertig mit der funktionalen Gleichheit wie sie hier benutzt wird. Es gilt also (a ⟺ b) = (a = b) oder (a ⟺ b) ⟺ (a = b). Man überzeugt sich auch leicht, dass der Name Äquivalenz berechtigt ist und die Operation einer Äquivalenzrelation entspricht; dabei sind die Äquivalenzklassen gerade…
Ist die Äquivalenz gleichwertig?
Sie nimmt nur dann den Wert 0 an, wenn a und b verschieden sind. Die Äquivalenz im logischen Sinne ist gleichwertig mit der funktionalen Gleichheit wie sie hier benutzt wird. Es gilt also (a ⟺ b) = (a = b) oder (a ⟺ b) ⟺ (a = b). Man überzeugt sich auch leicht, dass der Name Äquivalenz berechtigt ist und die Operation…
Was ist die Definition der elektrischen Kapazität?
Die Definitionsgleichung der elektrischen Kapazität lautet: C=QU. Die Kapazität eines Kondensators ist der Quotient aus der Ladung Q, die auf den Kondensatorplatten gespeichert ist und der Spannung U zwischen den Platten.
Ist die Äquivalenz von der Implikation zu unterscheiden?
Die Äquivalenz ist von der Implikation zu unterscheiden. Bei einer ungenauen Sprechweise wird oft ein einfaches „wenn“ verwendet, auch wenn „genau dann, wenn“ gemeint ist. Zum Beispiel: Zwei Dreiecke sind kongruent, wenn sie in allen drei Seiten übereinstimmen.
Was bedeutet mehrfache Äquivalenz?
Das bedeutet nichts anderes, als dass man mehrfache Äquivalenzen durch einen so genannten Ringschluss, eine Folgerungskette, die wieder zum Anfang zurückkehrt, beweisen kann. Die Äquivalenz ist von der Implikation zu unterscheiden.
Was ist eine logische Äquivalenz?
Logische Äquivalenz. Die Äquivalenz ⟺ beschreibt aussagenlogisch das, was man umgangssprachlich mit „genau dann, wenn“ formuliert. Wir definieren die Äquivalenz als Implikation, deren Umkehrung auch gilt: a ⟺ b:= (a ⟹ b)∧(b ⟹ a) Für diese Definition ergibt sich die folgende Wertetabelle: