Wie zeigt man dass eine Matrix symmetrisch ist?
Eine symmetrische Matrix ist in der Mathematik eine quadratische Matrix, deren Einträge spiegelsymmetrisch bezüglich der Hauptdiagonale sind. Eine symmetrische Matrix stimmt demnach mit ihrer transponierten Matrix überein.
Haben symmetrische Matrizen vollen Rang?
Der Rang einer Matrix ist ein fundamentales algebraisches Konzept. Sei A eine symmetrische Matrix und rang(A) = r. Dann besitzt A eine r × r Teilmatrix mit vollem Rang. Wenn eine Matrix A den Rang eins besitzt, so ist A notwendigerweise von der Form A = xyT für vom Nullvektor verschiedene Vektoren x und y.
Wann ist eine Matrix Schiefsymmetrisch?
Eine schiefsymmetrische Matrix (auch antisymmetrische Matrix) ist eine Matrix, die gleich dem Negativen ihrer Transponierten ist. In einem Körper mit Charakteristik ungleich zwei sind die schiefsymmetrischen Matrizen genau die alternierenden Matrizen und werden daher häufig mit ihnen gleichgesetzt.
Wann ist eine Matrix unitär?
Eine Matrix heißt unitär, wenn gilt: AAH=I (1) wobei gilt AH=ĀT (dh. dem komplex kojugierten Transponierten entspricht). Eine lineare Abbildung aus einem unitären Raum in sich selbst ist unitär, wenn ihre Matrix, bezüglich einer orthogonalen Basis, unitär ist.
Ist eine quadratische Matrix symmetrisch?
Eine quadratische Matrix ist dann symmetrisch, wenn das Vertauschen von Zeilen und Spalten die Matrix nicht verändert. Eine quadratische Matrix ist dann antisymmetrisch, wenn das Vertauschen von Zeilen und Spalten zu einem Vorzeichenwechsel der Matrix führt. Diese Bedingung hat zur Folge, dass alle Elemente auf der Hauptdiagonalen = 0 sein müssen.
Wie wird eine symmetrische Matrix charakterisiert?
Aufgrund der Symmetrie wird eine symmetrische Matrix bereits durch ihre Diagonaleinträge und die Einträge unterhalb (oder oberhalb) der Diagonalen eindeutig charakterisiert. Eine symmetrische Matrix weist demnach höchstens verschiedene Einträge auf.
Was ist die Summe zweier symmetrischen Matrizen?
Die Summe zweier symmetrischer Matrizen und jedes skalare Vielfache einer symmetrischen Matrix ist wieder symmetrisch. Die Menge der symmetrischen Matrizen fester Größe bildet daher einen Untervektorraum des zugehörigen Matrizenraums.
Was sind symmetrische Matrizen in der linearen Algebra?
In der linearen Algebra werden symmetrische Matrizen zur Beschreibung symmetrischer Bilinearformen verwendet. Die Darstellungsmatrix einer selbstadjungierten Abbildung bezüglich einer Orthonormalbasis ist ebenfalls stets symmetrisch. Lineare Gleichungssysteme mit symmetrischer Koeffizientenmatrix lassen sich effizient und numerisch stabil lösen.