Wie zeigt man dass eine Matrix symmetrisch ist?

Wie zeigt man dass eine Matrix symmetrisch ist?

Eine symmetrische Matrix ist in der Mathematik eine quadratische Matrix, deren Einträge spiegelsymmetrisch bezüglich der Hauptdiagonale sind. Eine symmetrische Matrix stimmt demnach mit ihrer transponierten Matrix überein.

Haben symmetrische Matrizen vollen Rang?

Der Rang einer Matrix ist ein fundamentales algebraisches Konzept. Sei A eine symmetrische Matrix und rang(A) = r. Dann besitzt A eine r × r Teilmatrix mit vollem Rang. Wenn eine Matrix A den Rang eins besitzt, so ist A notwendigerweise von der Form A = xyT für vom Nullvektor verschiedene Vektoren x und y.

Wann ist eine Matrix Schiefsymmetrisch?

Eine schiefsymmetrische Matrix (auch antisymmetrische Matrix) ist eine Matrix, die gleich dem Negativen ihrer Transponierten ist. In einem Körper mit Charakteristik ungleich zwei sind die schiefsymmetrischen Matrizen genau die alternierenden Matrizen und werden daher häufig mit ihnen gleichgesetzt.

Wann ist eine Matrix unitär?

Eine Matrix heißt unitär, wenn gilt: AAH=I (1) wobei gilt AH=ĀT (dh. dem komplex kojugierten Transponierten entspricht). Eine lineare Abbildung aus einem unitären Raum in sich selbst ist unitär, wenn ihre Matrix, bezüglich einer orthogonalen Basis, unitär ist.

Ist eine quadratische Matrix symmetrisch?

Eine quadratische Matrix ist dann symmetrisch, wenn das Vertauschen von Zeilen und Spalten die Matrix nicht verändert. Eine quadratische Matrix ist dann antisymmetrisch, wenn das Vertauschen von Zeilen und Spalten zu einem Vorzeichenwechsel der Matrix führt. Diese Bedingung hat zur Folge, dass alle Elemente auf der Hauptdiagonalen = 0 sein müssen.

Wie wird eine symmetrische Matrix charakterisiert?

Aufgrund der Symmetrie wird eine symmetrische Matrix bereits durch ihre Diagonaleinträge und die Einträge unterhalb (oder oberhalb) der Diagonalen eindeutig charakterisiert. Eine symmetrische Matrix weist demnach höchstens verschiedene Einträge auf.

Was ist die Summe zweier symmetrischen Matrizen?

Die Summe zweier symmetrischer Matrizen und jedes skalare Vielfache einer symmetrischen Matrix ist wieder symmetrisch. Die Menge der symmetrischen Matrizen fester Größe bildet daher einen Untervektorraum des zugehörigen Matrizenraums.

Was sind symmetrische Matrizen in der linearen Algebra?

In der linearen Algebra werden symmetrische Matrizen zur Beschreibung symmetrischer Bilinearformen verwendet. Die Darstellungsmatrix einer selbstadjungierten Abbildung bezüglich einer Orthonormalbasis ist ebenfalls stets symmetrisch. Lineare Gleichungssysteme mit symmetrischer Koeffizientenmatrix lassen sich effizient und numerisch stabil lösen.

Wie zeigt man dass eine Matrix symmetrisch ist?

Wie zeigt man dass eine Matrix symmetrisch ist?

Eine symmetrische Matrix ist in der Mathematik eine quadratische Matrix, deren Einträge spiegelsymmetrisch bezüglich der Hauptdiagonale sind. Eine symmetrische Matrix stimmt demnach mit ihrer transponierten Matrix überein.

Ist jede symmetrische Matrix positiv definit?

Eine symmetrische Matrix stimmt demnach mit ihrer transponierten Matrix überein. Eine wichtige Klasse reeller symmetrischer Matrizen sind positiv definite Matrizen, bei denen alle Eigenwerte positiv sind. In der linearen Algebra werden symmetrische Matrizen zur Beschreibung symmetrischer Bilinearformen verwendet.

Wann ist eine Matrix Antisymmetrisch?

Eine quadratische Matrix ist dann symmetrisch, wenn das Vertauschen von Zeilen und Spalten die Matrix nicht verändert. Eine quadratische Matrix ist dann antisymmetrisch, wenn das Vertauschen von Zeilen und Spalten zu einem Vorzeichenwechsel der Matrix führt.

Wann ist eine Matrix normal?

Normale Matrizen haben also die Eigenschaft, dass sie unitär diagonalisierbar sind. Es existiert daher eine Orthonormalbasis aus Eigenvektoren von A {\displaystyle A} . Insbesondere sind jede reelle symmetrische Matrix und jede komplexe hermitesche Matrix normal. Zudem ist jede unitäre Matrix normal.

Ist eine Matrix positiv definit?

sowohl positive als auch negative Eigenwerte, so ist die Matrix indefinit. . Da alle Eigenwerte größer Null sind, ist die Matrix positiv definit.

Wann ist Matrix positiv Semidefinit?

Es folgt, dass die Matrix A genau dann positiv semidefinit ist, wenn keiner der Eigenwerte λ ,…, λn negativ ist. Sie ist genau dann positiv definit, wenn alle Eigenwerte positiv sind.

Wann ist die Matrix singulär?

Definition Eine n-reihige, quadratische Matrix A heisst regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heisst sie singulär. Anmerkungen A is regulär, wenn det A = 0 ist, und singulär, wenn det A = 0 ist.

Wann ist eine Matrix unitär?

Eine Matrix heißt unitär, wenn gilt: AAH=I (1) wobei gilt AH=ĀT (dh. dem komplex kojugierten Transponierten entspricht). Eine lineare Abbildung aus einem unitären Raum in sich selbst ist unitär, wenn ihre Matrix, bezüglich einer orthogonalen Basis, unitär ist.

Wann sind zwei Matrizen kommutativ?

Um zwei Matrizen miteinander multiplizieren zu können, muss die Spaltenzahl der ersten Matrix mit der Zeilenzahl der zweiten Matrix übereinstimmen. Sie ist jedoch nicht kommutativ, das heißt, die Reihenfolge der Matrizen darf bei der Produktbildung nicht vertauscht werden.

Was ist die Summe zweier symmetrischen Matrizen?

Die Summe zweier symmetrischer Matrizen und jedes skalare Vielfache einer symmetrischen Matrix ist wieder symmetrisch. Die Menge der symmetrischen Matrizen fester Größe bildet daher einen Untervektorraum des zugehörigen Matrizenraums.

Was sind symmetrische Matrizen in der linearen Algebra?

In der linearen Algebra werden symmetrische Matrizen zur Beschreibung symmetrischer Bilinearformen verwendet. Die Darstellungsmatrix einer selbstadjungierten Abbildung bezüglich einer Orthonormalbasis ist ebenfalls stets symmetrisch. Lineare Gleichungssysteme mit symmetrischer Koeffizientenmatrix lassen sich effizient und numerisch stabil lösen.

Wie wird eine symmetrische Matrix charakterisiert?

Aufgrund der Symmetrie wird eine symmetrische Matrix bereits durch ihre Diagonaleinträge und die Einträge unterhalb (oder oberhalb) der Diagonalen eindeutig charakterisiert. Eine symmetrische Matrix weist demnach höchstens verschiedene Einträge auf.

Wie lässt sich eine quadratische Matrix schreiben?

Jede quadratische Matrix lässt sich dabei eindeutig als Summe einer symmetrischen und einer schiefsymmetrischen Matrix schreiben. Das Produkt zweier symmetrischer Matrizen ist genau dann symmetrisch, wenn die beiden Matrizen kommutieren.

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben