Wo ist eine Funktion differenzierbar?
Eine Funktion ist differenzierbar, wenn sie an jeder Stelle x0 differenzierbar ist – heißt umgekehrt: Sobald es eine Stelle gibt, an der f(x) nicht differenzierbar ist, ist die gesamte Funktion nicht differenzierbar.
Wann ist eine Abbildung differenzierbar?
Differenzierbarkeit einer Abbildung. Sei f W X ! W eine stetige Abbildung. als Richtungsableitung von f in x0 in Richtung v 2 V bezeichnet. W heißt differenzierbar, wenn sie in jedem Punkt x0 2 X differenzierbar ist.
Wann ist eine Funktion nicht differenzierbar?
Lexikon der Mathematik Nicht-Differenzierbarkeit liegt bei einer Funktion f:D→R an einer inneren Stelle a∈D⊂R vor, wenn der Differenzenquotient Qf (a, x) für D∍x→a in R nicht konvergiert. Ist dabei f außer an der Stelle a differenzierbar, so hat f an der Stelle a einen ‚Knick‘.
Ist eine stetige Funktion immer differenzierbar?
Da jede differenzierbare Funktion stetig ist, ist umgekehrt jede unstetige Funktion (zum Beispiel eine Treppenfunktion oder die Dirichlet-Funktion) ein Beispiel für eine nicht differenzierbare Funktion. Es gibt aber auch Funktionen, die zwar stetig sind, aber nicht oder nicht überall differenzierbar.
Wann ist eine Funktion überall differenzierbar?
Differenzierbarkeit einer Funktion in x0 bedeutet, dass der Graph dieser Funktion in x0 eine nicht zur y-Achse parallele Tangente besitzt. Definition: Es sei I ein offenes Intervall und f: Ι→ℝ. Die Funktion f heißt in I differenzierbar, wenn sie in jedem Punkt von I differenzierbar ist.
Wie oft ist die Funktion differenzierbar?
Wie früher gezeigt, ist f beliebig oft differenzierbar und f(k)(0) = 0 für alle k ∈ N0. Die Taylorreihe dieser Funktion konvergiert also trivialerweise, aber für x > 0 nicht gegen f(x).
Wann ist eine Funktion stetig differenzierbar?
Eine Funktion ist stetig differenzierbar, wenn sie differenzierbar ist und ihre ->Ableitungsfunktion stetig ist. Beispiel: Die Funktion f mit f(x) = 2x³+5x²+10 besitzt die stetige Ableitung f‘ mit f'(x) = 6x²+10x.
Wann ist eine Funktion total differenzierbar?
Die totale Differenzierbarkeit einer Funktion in einem Punkt bedeutet, dass diese sich dort lokal durch eine lineare Abbildung approximieren (annähern) lässt, während die partielle Differenzierbarkeit (in alle Richtungen) nur die lokale Approximierbarkeit durch Geraden in allen Koordinatenachsenrichtungen, nicht jedoch …
Wann ist eine Funktion nicht definiert?
Den Definitionsbereich einer Funktion oder eines Terms bestimmt man, indem man untersucht, ob einzelne Teile des (Funktions)terms für bestimmte Zahlenbereiche nicht definiert sind. Zahlen aus diesen Bereichen muss man aus der Definitionsmenge herausnehmen. Wurzeln (sind nur für Zahlen größer gleich Null definiert)
Wann ist eine Funktion stetig und differenzierbar?
Eine Funktion ist stetig differenzierbar, wenn sie differenzierbar ist und ihre ->Ableitungsfunktion stetig ist. Beispiel: Die Funktion f mit f(x) = 2x³+5x²+10 besitzt die stetige Ableitung f‘ mit f'(x) = 6x²+10x. Alle ->ganzrationalen Funktionen sind stetig differenzierbar.
Wie zeigt man dass eine Funktion beliebig oft differenzierbar ist?
Die Funktion f(n) : D(n) → R heißt die n-te Ableitung von f. Ist t0 ∈ D(n), dann heißt f(n)(t0) die n-te Ableitung von f in t0. (iii) f heißt beliebig (oder unendlich) oft differenzierbar in t0, wenn f n-mal differenzierbar in t0 für alle n ∈ N ist.