Warum braucht man Stammfunktionen?

Warum braucht man Stammfunktionen?

Stammfunktionen braucht man, um Flächen zwischen Funkionen zu berechnen. Im Gegensatz zu Ableitungen, wo man jede Funktion ableiten kann, kann man nicht jede Funktion integrieren [= „aufleiten“ = „Stammfunktion bilden“]. Im Allgemeinen kann man keine Produkte und keine Brüche integrieren.

Was ist eine Stammfunktion von f?

Es gilt aber: Findet man eine Funktion F, deren Ableitung gleich f ist, so ist F eine Stammfunktion von f. …

Kann eine Funktion stetig aber nicht differenzierbar sein?

Da jede differenzierbare Funktion stetig ist, ist umgekehrt jede unstetige Funktion (zum Beispiel eine Treppenfunktion oder die Dirichlet-Funktion) ein Beispiel für eine nicht differenzierbare Funktion. Es gibt aber auch Funktionen, die zwar stetig sind, aber nicht oder nicht überall differenzierbar.

Wie zeige ich dass eine Funktion integrierbar ist?

Man muss also eine Folge (Zl) von Zerlegungen betrachten, deren Feinheit gegen Null konvergiert für l gegen unendlich, sowie die zugehörige Folge der Riemann-Summen Sf(Zl) – und wenn diese dann gegen unendlich konvergiert für l gegen unendlich, ist die Funktion nicht integrierbar.

Sind Treppenfunktionen integrierbar?

Nach (18.1) ist jede Treppenfunktion Riemann-integrierbar.

Wann ist eine Funktion nicht Riemann-integrierbar?

nicht Riemann-integrierbar. Jede Untersumme ist ≤ 0, und jede Obersumme ist ≥ 1. Daher gibt es viele Zahlen C, die größer-gleich jeder Untersumme und kleiner-gleich jeder Obersumme sind, im Widerspruch zur Definition. Letzteres kann also durch eine Folge von Riemann-Summen beliebig genau approximiert werden.

Welche Funktionen sind Riemann-integrierbar?

Jede stetige Funktion f : Q → R ist Riemann-integrierbar. Beweis: Da f beschränkt und o(f,x) = 0 für alle x ∈ Q ist, folgt die Behauptung aus dem Darboux’schen Kriterium. Eine beschränkte Funktion f : Q → R ist genau dann Riemann-integrierbar, wenn f fast überall stetig ist.

Sind Unstetige Funktionen Riemann integrierbar?

ist stetig in allen irrationalen Zahlen und unstetig in allen rationalen Zahlen. Die Menge der Unstetigkeitsstellen liegt zwar dicht im Definitionsbereich, da diese Menge aber abzählbar ist, ist sie eine Nullmenge. Die Funktion ist damit Riemann-integrierbar.

Welche Funktion ist nicht integrierbar?

Funktionen, deren Integrale sich nicht durch elementare Funktionen ausdrücken lassen, werden nicht geschlossen integrierbar genannt.

Beginne damit, deinen Suchbegriff oben einzugeben und drücke Enter für die Suche. Drücke ESC, um abzubrechen.

Zurück nach oben